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1. Introduction 

This document constitutes a joint final report by Carnegie Mellon University (CMU) and SRI 
International for their collaborative work on the JFACC program under contracts F30602-97-2-
0066 (CMU) and F30602-97-C-0067 (SRI). 

The main accomplishment on the project was the development of an integrated planning and 
scheduling capability (the JFACC Planner/Scheduler, or JPS) that supports generation of tightly 
linked air operations plans and schedules, as well as their adaptation in response to changing 
tasks and resource availability. This effort built on existing planning (from SRI) and scheduling 
(from CMU) technologies that provide core generation and repair techniques, along with 
corresponding knowledge bases for air operations for each technology.  

By planning, we refer generally to the process of deciding what to do; that is, the process of 
transforming strategic objectives into executable activity networks. We use the term scheduling 
to refer to the process of deciding when and how; that is, which resources to use to execute 
various activities and over what time frames. Traditionally, planning and scheduling have been 
viewed as distinct activities, and different solution techniques and technologies have emerged for 
each. Relatively few attempts have been made to combine these technologies into larger 
integrated frameworks.  

Our technical work focused on defining techniques that provide increased coupling between the 
planner and scheduler.  Our expectation was that tighter coupling would yield performance gains 
along three dimensions: (1) reduced overall generation and repair times,  (2) improved quality of 
plans and schedules and  (3) greater stability in the solutions generated over time.  The particular 
approach that we pursued was based on the idea of approximating the resource requirements of 
different planning options using a model of resource intensity, and incrementally exchanging and 
exploiting information about likely resource shortfalls and excess capacity to identify options 
that best utilize available resources.  

Our work progressed in four phases.  First, we developed a baseline integration of our existing 
planning and scheduling technologies that was organized around a simple waterfall model of 
interaction.   With this model, planning and scheduling proceed in sequential, lockstep fashion; 
any problem encountered during scheduling simply triggers the generation of a new plan. 
Second, we explored a simple single-dimensional model of resource intensity that used 
qualitative assessments as the basis for reasoning about expected resource usage.  Third, we 
extended our integration to support plan and schedule repair in response to changes in tasking 
and resource availability.     Fourth, we explored a multidimensional model of resource intensity 
grounded in quantitative estimates of expected resource usage.  This multidimensional approach 
models resources at a finer level of granularity than does the single-dimensional approach, and 
so would be expected to have improved predictive value for estimating resource usage.  

Experimental evaluation was an integral part of our work.   Our experimentation was split into 
three main areas: 

§ Experiment A: Resource Feasibility Checking - Single-dimensional Intensity Model  This 
experiment focused on evaluating the extent to which the use of a simple single-
dimensional intensity model to support resource feasibility checking during plan 
generation could improve computational performance without sacrificing quality. 
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§ Experiment B: Plan and Schedule Repair This set of experiments tested a hypothesis 
similar to that of Experiment A, but for the case of plan and schedule repair rather than 
generation. In addition, it considered issues related to stability of plans and schedules as 
repairs were performed. 

§ Experiment C: Tighter Coupling through a Multidimensional Quantitative Intensity 
Model   This experiment set consisted of five related experiments that evaluated the 
effectiveness of the multidimensional intensity model relative to both waterfall 
integration and the single-dimensional intensity model.  The experiments tested the 
methods on a range of problems, as well as evaluating sensitivity of the key parameters of 
the multidimensional intensity adaptation method to small- and medium-size 
perturbations.  

Our experimental results show that the intensity-based approaches produce plans of comparable 
quality to the waterfall integration method, but for greatly reduced computation time. The 
performance improvements tend to increase with the level of resource constrainedness of the 
problem, thus making our techniques most valuable in situations where resource content ion is 
high.  Our final set of experiments further showed that the multidimensional intensity approach 
provides significant improvement over the simpler single-dimensional model. 

The results of this project have been documented in three published technical papers.  The first 
paper addresses general issues for the problem of integrating planning and scheduling 
technologies. The second paper provides a brief overview of our intensity adaptation method, 
along with a small set of experimental results that validate its usefulness.  The third paper 
provides a more detailed description of our approach, and includes a broader set of experimental 
results.  

§ “Issues in the Integration of Planning and Scheduling for Enterprise Control”, K.L. 
Myers and S.F. Smith, Proc. DARPA Symposium on Advances in Enterprise Control, 
1999. 

§  “Integrating Planning and Scheduling through Intensity Adaptation”, K. L. Myers, S. F. 
Smith, D. W. Hildum, P. Jarvis, R. de Lacaze, Proceedings of the IJCAI-01 Workshop on 
Planning with Resources, 2001. 

§ “Integrating Planning and Scheduling through Adaptation of Resource Intensity 
Estimates”, K. L. Myers, S. F. Smith, D. W. Hildum, P. Jarvis, R. de Lacaze, European 
Conference on Planning, 2001. 

The remainder of this report is organized as follows.  Section 2 motivates the need for improved 
techniques for integrating planning and scheduling.  Section 3 provides background information 
on the planning and scheduling technologies from SRI and CMU, along with an overview of the 
JPS system.  Section 4 discusses key aspects of the air operations domain and their impact on the 
design of algorithms for integrating planning and scheduling. Section 5 describes the single-
dimensional intensity model and and its use for supporting resource feasibility checking in 
plan/schedule generation, along with the results for Experiment A. Section 6 describes our 
approach and experimental evaluation for plan/schedule repair (i.e., Experiment B).   Section 7 
summarizes our multidimensional intensity model along with the results for Experiment C.  
Section 8 presents our conclusions for the project.  
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Our initial experiment plan called for the connection of the planner/scheduler to a simulation 
environment, as a means of enabling evaluation of the embedded and real-time capabilities of the 
system. Two candidates were considered: the Air Operations Enterprise Model developed by 
BBN, and the SimFlex simulation framework developed by SRI in the previous phase of the 
JFACC program.  In consultation with program management in mid-summer 2000, it was 
decided that we should concentrate our effort on increasing the sophistication of our techniques 
for planner/scheduler interactions, with an eye toward transition of the technology to operational 
programs.  For the sake of completeness, the Appendix includes an outline for an experiment to 
evaluate the effectiveness of JPS as an embedded controller. 
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2. The Need for Integrated Planning and Scheduling  

Goal-oriented activity in complex domains typically requires a combination of planning and 
scheduling. Military planners must select courses of actions that achieve strategic objectives, 
while making the most of available assets. A manufacturing facility must develop process plans 
for ordered parts that can be integrated cost-effectively with current production operations. Space 
observatories must allocate viewing instruments to maximize scientific return under a large and 
diverse set of causal restrictions and dependencies. Though conceptually decomposable, 
planning and scheduling processes in such domains can be and often are highly interdependent. 
Different planning options for achieving a given objective can make quite different demands on 
system resources; correspondingly, current resource commitments and availability will impact 
the feasibility or desirability of various planning options. The dynamics of the operating 
environment complicate matters further, requiring efficient response to continual unexpected 
changes to system objectives and resource availability.  

The effectiveness of goal-oriented activity is ultimately tied to an ability to keep pace with 
evolving circumstances, and one recognized obstacle in practice is poor integration of “planning” 
and “scheduling” processes. In manufacturing organizations, this problem has been characterized 
as the “wall between engineering and manufacturing”. Similar sorts of barriers can be found in 
other large-scale enterprises. The crux of the problem is lack of communication. Plans are 
developed with no visibility of resource availability and operational status and, likewise, 
schedules are developed and managed without knowledge of objectives and dependencies. 
Without such information exchange, planning and scheduling processes are each forced to 
proceed in an uninformed and inherently inefficient manner. In the simplest case, the result is an 
iterative waterfall model of integration, where planning and scheduling are performed in 
sequential lockstep fashion, and any problem encountered during scheduling simply triggers the 
generation of a new plan. Unfortunately, the iterative waterfall approach to integration is quite 
common in many application domains, leading to artificially inflated lead times and costs in 
manufacturing environments, more protracted and more resource wasteful military campaigns, 
missed opportunities at scientific observatories, and so on. 

Despite the broad need for better integration of planning and scheduling processes, research in 
this area has been rather sparse [Dean et.al 88, Muscettola et.al 92, McVey et.al 97, Sadeh et.al 
98, Chien et.al 99, Jonsson et.al 00, Smith et.al 00, Srivastava et.al 01]. In many cases, the 
domains of interest have been heavily resource driven (e.g., [Muscettola et.al 92, Sadeh 98, 
Chien 99, Jonsson 00]), with simple, locally contained planning subproblems. By and large, 
these problems have not required sophisticated planning capabilities and have been solved using 
extended scheduling techniques. Other work has focused mainly on structured benchmark 
problems (e.g., [Srivastava et.al 01]), where systematic techniques can be tractably applied.  
Such methods do not scale to problems such as the air operations domain considered in our 
work.  
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3. The JPS System: Components and Design 

This section describes the core planning (Section 3.1) and scheduling (Section 3.2) technologies 
used within the project, as well as the architecture of the JFACC Planner/Scheduler system 
(Section 3.3). 

3.1. Planning Technology 

The Continuous Planning and Execution Framework (CPEF) provides the basis for the planning 
component for our work (Myers 99). CPEF embodies a philosophy of plans as dynamic, open-
ended artifacts that evolve in response to a continuously changing environment.  CPEF provides 
a range of operations required for continuous plan management, including plan generation, plan 
execution, monitoring, and plan repair.   Plan generation within CPEF is based on the 
Continuous Hierarchical Incremental Planner (CHIP) system.   CHIP is a hierarchical task 
network (HTN) planner derived from SIPE-2 (Wilkins 88).  CHIP is, essentially, a reengineering 
of the SIPE-2 system that supports the incremental planning model required for our 
planner/scheduler integration.  

Figure 1. The CHIP Planner 

Figure 1 illustrates the architecture of the CHIP system.   The role of the planner is to expand an 
initial set of user-provided objectives to a complete set of actions for achieving those objectives.    
The core CHIP planning engine is domain independent; application of CHIP to a specific 
problem domain requires the formulation of three types of background information to inform the 
planning engine during its operation.    

§ The operator library provides the strategic knowledge needed to decompose objectives.  
Each operator describes one approach for decomposing a specific objective or task into a 
more detailed set of objectives, tasks, and actions.   For example, the air operations 
domain contains a number of different strategies for neutralizing an enemy IADS.  
Constraints defined within an operator impose conditions on when individual operators 
can be used.    

   

Domain Model   

   Objectives   World State   

PLANNING   
ENGINE   

Hierarchical Plan   

Operator   
Library   

Advice   
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§ The domain model describes general constraints about the application domain.  For the 
air operations application, the domain model includes geographic information for the area 
of operations and general information about forces and equipment.   

§ The world state model describes the expected conditions in which the plan would be 
executed.  For the air operations domain, the world state includes information about 
resource ava ilability, threats, and centers of gravity. 

Given an initial set of objectives, the planning process proceeds in top-down fashion.  At each 
level, the planning engine selects operators to refine outstanding objectives and tasks to the next 
level of detail.  Much of the selection process involves validating the conditions of applicability 
for operators:  those conditions must be satisfied relative to the world state and domain models in 
order for an operator to apply.  The planning process terminates when all objectives and tasks 
have been refined to executable actions.      

The CHIP system also folds in the capabilities of the Advisable Planner (Myers 96), which 
provides an advice-taking layer that enables a user to guide and direct the plan generation toward 
solutions that match his or her individual preferences.   Advice enables users to express 
preferences for strategies with certain characteristics, or that use or avoid specified entities (such 
as certain resources) in designated situations. 

3.2. Scheduling  Technology 

The base scheduling capability for our work is provided by ACS (Air Campaign Scheduler). 
ACS is an air operations scheduler constructed using OZONE (Smith, Lassila and Becker 96), a 
customizable constraint-based modeling and search framework for developing incremental 
scheduling applications. OZONE consolidates the results of application development experiences 
in a range of complex domains, including one recently deployed system for day-to-day 
management of airlift resources at the USAF Air Mobility Command (AMC) (Becker and Smith 
00). 

The ACS scheduler adapts techniques underlying the AMC application to the air operations 
domain. Its functional scope is depicted in Figure 2. ACS is provided with three broad types of 
inputs:  

§ a set of demands, relating to input tasks (targets/DMPIs) to be scheduled and their 
corresponding constraints,  

§ a set of capabilities, specifying (1) what types and amounts of resource capacity 
(assets, munitions) are available for use, (2) where they are positioned in theater and 
over what interval(s) they may be used, and (3) a table of weaponeering solutions, 
that map the effectiveness of different platform/munitions pairs to various target 
category codes, 

§ world state information, indicating such exogenous factors about the execution 
environment as threats and weather, as well as information relating to execution 
results. 

The output from ACS provides inputs to feed generation of a Dynamic Air Execution Order (a 
“continuous” form of a Master Air Attack Plan). ACS generates a set of assigned strike missions 
designating, for each input target/DMPI demand: 
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− the set of sorties to be flown (possibly converging on the target from different bases),  

− the numbers of aircraft and munitions to be expended from each base and,  

− the precise time windows for various stages of the flight itinerary (including TOT 
windows). 

 

•  Desired Pk
•  Priority

Capabilities
• aircraft beddown ,
• munitions inventories
• weaponeering soltns .
• resource constraints

DAEO Inputs
• Aircraft(base)/munitions assignments
• TOT windows
• Packaging
• Derivative non-strike mission assignments
& schedules

World/
Execution
State
• threats
• weather
• strike outcomes

ACS

T2
T1 T3

Obj1

T5T4

Obj2Demands

•  Time windows
•  Sequencing constraints 
•  Parent objectives

 

Figure 2: ACS Functional Scope  

 

On its own, ACS provides a range of air campaign scheduling capabilities. In generative mode, it 
can be used to efficiently generate assignments of aircraft and munitions to a given set of input 
target/DMPI demands. As suggested above, these assignments take into account such 
considerations as target priorities, desired levels of destruction, time-on-target (TOT) windows, 
temporal sequencing constraints, feasible weaponeering solutions, and aircraft/munitions 
positioning and availability constraints. ACS can also be used in incremental mode, both (1) to 
accommodate and integrate new demands into a continuously evolving air campaign schedule, 
and (2) to reactively reallocate in response to unexpected changes in the execution status (e.g., 
loss of aircraft, insufficient destruction effect). Finally, ACS provides capabilities for selective 
(user-driven) relaxation of constraints, providing a basis for exploring alternatives (e.g., delaying 
missions, surging) in situations where all constraints cannot be satisfied. The ACS user interface 
(See Figure 3) provides a range of displays for visualizing and incrementally manipulating input 
constraints and allocation decisions. 
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1. Generate
Mission Schedules

2. View Air Attacks
from Sigonella

3. View Available
Resource Capacity

4. Adjust Resource
Availability Constraints

 

Figure 3: ACS Graphical User Interface  

 

3.3. JPS Architecture  

The JPS system, as illustrated in Figure 4, comprises three main components: the planner, the 
scheduler, and the plan server.  These components exchange information through a set of JPS-
specific protocols designed to support the exchange of plans, schedules, and status-related 
information. The actual communication of messages is provided by a KQML message-passing 
system, which provides peer-to-peer message exchange across the Internet (Finin et al. 92).  We 
chose this design to enable SRI and CMU to run their technologies on local machines, thus 
providing a simple and natural environment for collaborative development.  

The JPS plan server provides a central repository for plans and schedules, as well as for 
information related to the planning/scheduling process.  The plan server accepts incoming 
information from agents, performs necessary processing, and stores relevant information in its 
internal representation.  Information stored within the plan server (including scheduled plans) 
can be accessed through a rich query language. 
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Figure 4. JPS Architecture  

JPS has no centralized controller to dictate when planning or scheduling takes place.  Rather, JPS 
employs a decentralized framework for managing the interactions between the planner and 
scheduler.  The approach builds on two key mechanisms within the plan server: annotations and 
triggers.  Annotations are declarations about the status of products (i.e., plans, schedules) and 
processes (i.e., the status of planning or scheduling operations), and are asserted into the plan 
server knowledge base.  Triggers are event-response rules activated by the assertion of 
annotations, and result in messages being sent to designated recipients.  Through appropriate 
declarations of annotations and triggers, components can initiate activities by other components 
without the need for a centralized controller.   

For example, once the planner completes a given subplan, it posts an annotation of the form  

 

 (SUBPLAN-COMPLETE <subplan- id> <plan- id>)   

 

to the plan server.  The plan server includes a trigger that is activated by receipt of this 
annotation, which results in a message being dispatched to the scheduler requesting that it 
schedule the new subplan. 

This distributed control model provides great flexibility, enabling interactions between the 
planner and scheduler to be added through the declarative specification of annotations and 
triggers rather than through code changes.   This design was helpful with the evolution of JPS 
because it enabled quick and easy updates to control flow within the system.  The design also 
promotes modularity:  incorporation of a new component only requires ‘wrapping’ the 
technology to support the JPS communication protocols, and designing appropriate annotations 
and triggers. For example, a module that does plan evaluation could easily be integrated into 
JPS:  the module would need only post a trigger saying that it was interested in being notified 

 

Plan Server 

PLANS 
SCHEDULES 

ANNOTATIONS 

TRIGGERS 

Scheduler Planner 

KQML Messages 

SRI CMUSRI
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when subplans were completed so that it could retrieve the plans and assess them (possibly while 
scheduling is occurring).    

The integration infrastructure within JPS builds substantially on components of the architecture 
of CPEF, which was developed by SRI during the previous phase of the JFACC program.  The 
KQML message-passing capabilities were taken directly from the earlier system.  The JPS plan 
server was built on top of the CPEF plan server, extending it to support the schedules, subplans, 
and subschedules.  In addition, many of the communication protocols, annotations, and triggers 
from CPEF were incorporated into the JPS system; however, many extensions to these concepts 
were required to support the JPS model of incremental planning, as well as scheduler-related 
requirements. 
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4. The Air Operations Domain 

Applications that require integrated planning and scheduling will have individual characteristics 
that dictate the relative importance of each of these capabilities.  Much of the work to date on 
combining planning and scheduling has focused on resource-driven domains (such as satellite 
observation scheduling (Muscettola et al. 92)), which emphasize optimization of resource usage 
in satisfying a pool of tasks.  In contrast, the air operations domain has a more goal-driven 
flavor: while effective resource usage is important, the key motivation is to identify and schedule 
actions that will ensure attainment of stated objectives.   

Objectives within our model of the air operations domain reduce to goals of neutralizing enemy 
capabilities (e.g., antiaircraft capability, electricity production, communications) modeled as 
hierarchical networks that ground out at the level of specific targets. We provide several 
strategies for attacking different network types that vary in their aggressiveness, and hence 
resource demands.  For example, strategies range from attacking all components in a network, to 
attacking a coherent subset, or an isolated node (Lee 98). 

Resources (i.e., aircraft, munitions) are assigned to support prosecution of individual targets.  For 
a given type of target, there are usually several alternative aircraft/munitions configurations that 
could be used. However, different configurations will have different degrees of effectiveness, 
and hence the numbers of resources that must be allocated to achieve the desired effect can vary 
with each choice. Quantities (or capacities) of different types of resources are positioned at 
various locations nearby or within the geographic region of interest.  The set of resources 
assigned to fly against a given target can vary in type and, depending on availability, may either 
originate from multiple locations (converging on the target within a particular time interval) or 
recycle from the same base location (making sufficient sets of consecutive strikes on the target).  

The style of planning required for this domain differs markedly from standard approaches to 
automated planning.  Here, the search space is dense with solutions, making it easy to find a plan 
that satisfies stated goals.  The real challenge is to find ‘good’ plans rather than settling for the 
first available solution. While most automated planning systems seek to minimize plan size, 
bigger plans tend to be better in this domain. For example, eliminating more of an enemy’s 
missile sites tends to improve the quality of a plan for neutralizing enemy attack capability.   
Note that maximizing plan size is not equivalent to maximizing resource usage:  the planner and 
scheduler must still decide how to allocate available resources economically to support potential 
activities.  

Air operations commanders generally apportion a set of resources for a given set of high- level 
objectives; human planners are expected to develop solutions that maximize the likelihood of 
objective attainment while staying within the resource allotment.  Our planning models 
incorporate this apportionment perspective into their design.  In particular, initial plans seek to 
capitalize on all available resources; as resource problems arise, strategies are adopted that 
decrease resource usage.  
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5. Experiment A: Resource Feasibility Checking – Single-Dimensional Intensity Model 

This section describes an initial integration experiment to evaluate the extent to which 
incremental resource feasibility checking improves the efficiency of plan/schedule generation. 
More specifically, we first investigate the extent to which incorporation of a simple form of 
resource feasibility checking during plan generation can improve the computational performance 
of generating a combined plan/schedule without sacrificing plan/schedule quality. The 
description provided below conforms to the documentation format provided by the JFACC 
program. 

5.1. Statement of Experimental Objectives 

5.1.1. Hypotheses 

Hypothesis: Early consideration of resource allocation issues during planning can improve 
efficiency substantially. 

Level: Process Experiment 

Description: To test this hypothesis, we will run the integrated planner/scheduler in two modes.  

• For the baseline, we will provide a loosely coupled integration of planning and scheduling, in 
which the planner generates a plan in isolation and then passes it to the scheduler. The output 
from the planner will consist of a combination of Combat Air Patrol (CAP) missions and 
targets, along with sequencing, priority and mission horizon information. The scheduler will 
perform resource allocation and time-on-target assignments for the provided plan. Should the 
scheduler be unable to produce an acceptable schedule, the process of plan generation 
followed by scheduling will be repeated. We refer to this baseline as the iterative waterfall 
mode. 

• The resource feasibility checking mode will be similar to the baseline but it will support 
intermediate, incremental invocation of the scheduler by the planner, during planning, to 
assess the feasibility of potential strategies under consideration.  

Various approaches can be considered for feasibility checking during planning to determine the 
viability of current decisions. The approach taken for this experiment will be based on a simple 
single-dimensional model of resource intensity. 

The experiment will compare the time required to generate a final scheduled plan by each of 
these planning/scheduling modes. 

5.1.2. Value 

Effective command and control requires both timely response to unexpected events and 
consideration of a broad range of options. By making substantial reductions in the time required 
to develop and adapt quality plans and schedules, the proposed resource feasibility-checking 
techniques will enable commanders to rapidly develop and evaluate multiple courses of action in 
highly dynamic settings. 
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5.2. Description of Experimental Setup 

5.2.1. Simulation Features 

This experiment did not require a simulation environment, and was conducted independently of 
program-wide Enterprise Models. 

5.2.2. Variables or Correlated Parameters  

Independent variables: resource availability profiles. 

 

5.2.3. Specification of a Set of Test Runs  

The improvements yielded by feasibility checking can be expected to vary depending on the 
degree of resource constrainedness of the underlying problem: greater benefits should result for 
problems where more strategies are resource infeasib le within a given mission time horizon. The 
experiment will take this factor into account by considering resource availability profiles that 
provide qualitatively distinct points along the spectrum of resource constrainedness. For several 
points along this spectrum, we will define a distribution of resource profiles.  Multiple runs will 
be performed for each point by selecting randomly among the resource profiles in the 
corresponding distribution.  

In any given run of the system in baseline mode, replanning will be triggered in the event that the 
scheduler is unable to generate a resource-feasible schedule that achieves all requested objectives 
within the specified mission time horizon. In resource feasibility checking mode, indication of 
infeasibility will divert the planner to consider other strategic alternatives. System performance 
in both modes will be measured in terms of the computation times required for 
planning/scheduling across various test runs. 

5.3. Results  

5.3.1. Overview of the Single -dimensional Intensity Approach 

As noted above, one can consider a variety of strategies for providing resource feasibility 
checking during planning, based on when feasibility is assessed, the nature of the feedback from 
the scheduler, and the corresponding response.  This section reports results for an approach that 
assesses feasibility at the level of subplans for the overall set of objectives, using a model of 
intensity to approximate resource demand, and adaptation by the planner in response to 
scheduler feedback.  

The approach involves planning in strategy-to-task fashion down to a specified level of detail 
(the decomposition layer), and then splitting into subplans that are planned separately (see Figure 
5). The decomposition layer, defined implicitly in terms of specific goals, separates the higher-
level strategic decisions that define overall plan structure from the planning of (mostly 
independent) lower- level objectives.  

After completion of each subplan, the scheduler performs incremental resource allocation for the 
actions introduced by the subplan, relative to resource assignments made for previous subplans. 
In the event that the scheduler is unable to produce a satisfactory resource assignment, the 
planner will modify a completed subplan to reduce resource demand, and then forward the 
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revisions to the scheduler for appropriate adjustments to the current schedule. Once all 
outstanding resource problems have been resolved, the planner continues with generation of 
remaining subplans until completion of a full plan and schedule.  With this approach, the 
integrated plan and schedule is built in piecewise, incremental fashion, with adjustments made in 
response to detected resource problems.  

This incremental approach would be ineffective for domains in which extensive strategic 
dependencies link objectives. However, in our models for the air operations domain, most 
dependencies occur at the level of resource allocation, thus enabling the separation of the 
planning for individual objectives. The incremental approach has the added benefit that it can be 
used for dynamically extending plans to include additional objectives as plan execution unfolds. 

 

Figure 5. Planner/Scheduler Control Flow 

To make informed decisions about its cho ices, a planner requires some model of the resource 
impact of its decisions. Although the specific actions that require resources do not appear until 
the lowest levels of our hierarchical models, high- level decisions have a great impact on resource 
requirements. For example, the decision of whether to employ a passive or more proactive 
approach to defending assets will greatly influence resource requirements, although the actual 
missions that require resources are planned at much lower levels of detail. For this reason, our 
approach to linking planning and scheduling builds on a heuristic characterization of expected 
resource usage by a planning operator, which we refer to as an operator’s intensity.  

For this first experiment, we employ a simple model of operator intensity that represents a 
qualitative assessment of the operator’s expected resource usage relative to alternatives for the 
same task. The air operations domain, for example, contains multiple operators for neutralizing 
an enemy’s communication capability, ranging from taking out a single site, to destroying some 
select subset of communication devices, to eliminating all communication nodes. For an intensity 
scale of [0 40] (as was used in our experiments), the first operator might be ranked a 10, the 
second a 20, and the third a 40 to reflect their relative levels of expected resource consumption.  
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i    - # of completed subplans 

Ri  - Remaining capacity after planning i subplans 

n   - # of subplans that require resources 

K   - Maximum intensity 
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 Target Intensity 

   K                     if  U >= 1 (resource underutilization) 

   U*(K-Delta)        if  U <  1  (resource overutilization)  

Such qualitative ratings should be readily assessable by the knowledge engineer who develops 
the planning operators, especially since they need only be approximate. 

The incorporation of intensity information to guide planning occurs at the level of subplans. For 
a given subplan, the planner calculates a target intensity, denoted by IT. This value represents the 
expected ‘ideal’ use of resources for a particular subplan, relative to availability and expected 
demand for remaining subplans.  When faced with a choice among multiple applicable operators 
for a task in a given subplan, the planner will select the one that is closest to the target intensity 
for the subplan without exceeding it.   During the plan/schedule development process, scheduler 
feedback could indicate a shortage/excess of remaining resources, relative to the subplans yet to 
be generated and scheduled. Such a shortage/excess would be reflected in the setting of the next 
target intensity at a lower/higher level; the planner would then be biased toward selecting 
operators with lower/higher intensity values to reduce/increase resource consumption levels. In 
this way, the planner dynamically adjus ts its decision-making in response to scheduler feedback. 

 

 

 

Figure 6. Target Intensity Selection 

 

Figure 6 defines the method used to compute target intensities for subplans, which provides the 
basis for the intensity adaptation approach. The value U corresponds to the ratio of available 
resources for the current subplan to the value originally allocated. In the case where U>=1, 
resource usage is ‘on track’ and the target intensity is set to the maximum value. In the case 
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where U<1, resources have been overused. In this case, the target intensity is set to the product 
of K - Delta and the scaling factor U. Here, the value Delta can be set to cause more or less 
conservative back-off strategies in the face of resource over-utilization. For our experiments, 
intensity values lay in the interval [0,40], with Delta set to 10. 

5.3.2. Experiment A Results  

The metric for this experiment was generation time. One difficulty with this metric is that 
generation time can be minimized by always generating the simplest possible plan (since it 
would require the fewest resources). To counter that possibility, we adopted a plan generation 
strategy that assumes that the use of available resources should be maximized. Thus, initial plans 
seek to capitalize on all available resources; as resource problems arise, strategies are adopted 
that back-off on expected resource usage. This model corresponds to a situation where a 
commander has been apportioned a collection of resources, and is allowed to use them to the 
extent possible to accomplish his objectives. This apportionment perspective makes it possible 
for generation time to be a meaningful metric. Models of plan quality could have been used as an 
alternative mechanism; however, the development of adequate models of plan quality is an 
extremely challenging task. 

The experiment involved comparing the computation time of the iterative waterfall and 
incremental intensity adaptation methods over a range of resource profiles.  To draw fair 
comparisons with the intensity-based approaches, the waterfall method considers operators in 
decreasing order of intensity.  This strategy generally yields a plan that is close to the largest 
supportable for the available resources but is not necessarily optimal (i.e., the chronological  

 

 

Figure 7. Experiment A: Comparison of Plan/Schedule Generation Times (in seconds) for Iterative 
Waterfall vs. Incremental Methods  

 

backtracking used by the waterfall method will stop when it finds the first solution, even though 
undoing an earlier operator choice might enable subsequent choices that are more aggressive). 
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The most generous resource profiles used in the experiment contained sufficient resources for a 
plan in which maximum intensity strategies were always selected (the maximum intensity plan); 
successively smaller profiles contained fewer resources, with the smallest providing just enough 
resources for the plan for which the minimum intensity strategies were always selected (the 
minimum intensity plan). The maximum intensity plan contains 346 actions to schedule, while 
the minimum contains 62. These actions are mostly force application to designated DMPIs, but 
also contain small numbers of CAPs and jamming activities. 

Highlights of the experimental results are displayed in Figure 7. The results showed that in cases 
where sufficient resources were available for the maximal plan, the waterfall method 
outperformed the incremental method with respect to generation time (on average, 180 seconds 
versus 235 seconds). In particular, the incremental method required approximately 30% 
overhead. However, in the more resource-constrained cases, the waterfall method failed to find 
any solutions after 10 hours of runtime, while the incremental method completed in times 
varying from 613 to 634 seconds (depending on the resource profile). 

The behavior of the waterfall method in resource-constrained cases was far worse than 
anticipated. Analysis of test runs revealed that the large times resulted from the nature of the 
distribution of choice points. In particular, while numerous choices are available at low levels of 
plan decomposition, modifications at that level have minimal impact on resource requirements. 
Changes higher up in the planning structure are required to significantly impact resource 
requirements. Within the planner, backtracking proceeds in chronological order, resulting in 
lowest- level decisions being reconsidered before high- level ones. Thus much backtracking is 
wasted on making modifications to plans that have minimal impact on schedulability. In contrast, 
because the intensity-based method recomputes entire subplans, it is able to reduce resource 
requirements much more quickly. 

One surprising aspect of the experiment runs was the much larger than anticipated runtimes for 
the incremental planning process.  Additional analyses showed that much of the performance 
penalty stems from some inefficiencies in the implementation of the incremental planning 
method.  Our HTN planner was designed originally to operate in a level-oriented mode: given a 
partially refined plan, it searches through the plan for all unresolved goals and then applies an 
operator to expand each to a set of more refined tasks.  The basis for our integration with the 
scheduler, however, revolves around the notion of subplans, which constitute localized 
components of the overall plan. In particular, the system plans (and then schedules) individual 
subplans in turn.  To facilitate rapid development early in the project, we decided to implement 
our subplan model of planning by having the planner simply ‘copy down’ those components of a 
given planning level that are not within the current subplan under consideration.  Doing so 
enabled us to reuse much existing code. However, as we have discovered, the copying leads to 
the creation of much excess structure in the plan that significantly slows operation.  

For example, for the test case used in Experiment A, level-by- level expansion requires a total of 
20 planning levels and 28,858 planning nodes, while the incremental approach requires 44 levels 
and 38,424 nodes. This substantial increase in the overall size of the plan structure has caused the 
planning times to be much higher than is warranted for the approach. 

This problem is an implementation issue only, not an inherent limitation of the incremental 
approach.  Much of this extra cost could be eliminated through a reimplementation of the core 
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planning algorithm in which subplans are generated ‘in place’, rather than repeatedly recopying 
the structure outside of the subplan. 

In summary, our initial experiment showed that while the incremental mode incurs a 
performance penalty when there is an abundance of resources, it provides far superior 
performance when resources are limited.  Furthermore, a better implementation of our 
incremental planning method would result in greatly improved performance. 

 

5.3.3. Future Directions  

This experiment can be extended in several directions. First, sensitivity analyses should be 
performed to provide a better understanding of how much the approach depends on the intensity 
assignments. Second, we believe that even better results could be obtained through planning 
strategies that embody a deeper understanding of resource allocation issues.  Experiment C 
(Section 7) addresses both of these issues.   

A third area for consideration relates to a more general control model.  In particular, it would be 
valuable to consider a model that enables temporal deadlines (i.e., the mission time horizon) to 
be traded against intensity. 
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6. Experiment B: Plan and Schedule Repair 

This section describes a second integration experiment designed and performed to evaluate the 
potential advantage of interleaved planning and scheduling for plan and schedule repair rather 
than generation. In addition, this experiment considers issues related to stability of plans and 
schedules as necessary solution repairs are performed. The description provided below conforms 
to the documentation format provided by the JFACC program. 

6.1. Statement of Experimental Objectives 

6.1.1. Hypotheses 

Hypothesis B1: Incremental plan and schedule repair methods will improve the efficiency with 
which plans and schedules are adapted to account for new external events and the continuity (or 
stability) of plans and schedules generated over time (at the possible expense of some loss in 
overall solution quality).  

Hypothesis B2: Tight coupling of plan and schedule repair will enable faster adaptations and 
better quality results in a given decision time frame than does loose coupling, where degree of 
coupling is characterized in terms of amount of information communicated. 

Level: Process Experiment 

Description:  

When unexpected events occur or assumptions are invalidated, modifications to plans and 
schedules will be required. We are developing techniques that enable the planner and scheduler 
to guide the modifications made by the other, as a way to both reduce the time required to 
complete the adaptations, and to maintain greater stability (i.e., fewer changes) to currently 
planned and scheduled activities.  

As a first step toward evaluating these techniques, we consider the prerequisite issue of 
incremental versus regenerative response to a new unexpected event. At both the planning and 
scheduling levels it is possible to consider modification approaches that either (1) recompute the 
plan or schedule from scratch, taking into account the new information or (2) incrementally 
revise (or repair) portions of the plan or schedule to account for the new information. Since the 
techniques we are developing for tighter coupling between planner and scheduler actions assume 
an incremental (or repair-based) approach to modification, it is useful to first quantify the 
tradeoffs surrounding this basic assumption. Accordingly, we will first compare regenerative and 
incremental modification strategies at both planning and scheduling levels for responding to 
specific events. 

Given the results of this first step, we will compare the performance of repair techniques 
designed to communicate and exploit additional information (tight coupling) to a repair approach 
in which there is minimal communication between the planner and scheduler. In particular, the 
planner will communicate only plan changes and the scheduler only those actions that are no 
longer supported in the modified schedule in the “minimal communication” configuration. 

The experiment will encompass repair tasks triggered by two types of events:  

− changes in tasking, in particular the introduction of new objectives 
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−  changes in resource availability, in particular the loss of some amount of resource 
capacity over some time interval 

 

6.1.2. Value 

Responsiveness to situation dynamics is critical for successful air operations. Adaptations to 
plans and schedules must be rapid and should minimize disruption to currently planned or 
ongoing activities. The development of techniques that can support faster, less-disruptive 
adaptations will enable more flexible and robust command and control. 

6.2. Description of Experimental Setup 

6.2.1. Simulation Features 

This experiment does not require a simulation environment, and as such will be conducted 
independently of program-defined Enterprise Models. 

6.2.2. Variables or Correlated Parameters  

Independent variables:  type and magnitude of changes, level of resource contention. 

6.2.3. Specification of Test Runs  

Different types of change can lead to widely varying impacts on a plan and schedule. For this 
reason, we will perform test runs that begin with an existing plan/schedule in place and involve 
responding to a set of different types of externally imposed changes (e.g., new objectives or 
guidance, updated resource availability profiles.). For each type of change, we will define 
multiple runs by varying the magnitude of the particular change. This will allow evaluation of 
tightly and loosely coupled revision strategies under varying assumptions as to the degree of 
disruptiveness to the existing plan and schedule. 

We will measure comparative performance with respect to (1) the computational cost of the 
replanning and rescheduling processes, (2) appropriate measures of solution quality (e.g., overall 
makespan of operation, percentage of unsupportable missions), and (3) extent of change to 
current solution (or equivalently the degree of continuity in the plan/schedule). 

6.3. Pre-Lab Analysis  

It is likely that different plan and schedule repair strategies will be relevant to different types of 
externally imposed changes. Preliminary experimentation will be performed to tune and assess 
the prospective strengths of different schedule and plan repair strategies, and to determine system 
test configurations for loosely coupled and tightly coupled plan and schedule repair modes. 

6.4. Results  

6.4.1. Experiment B1: Response to New Objectives 

This section reports the results of the study designed to quantify the tradeoffs between 
incremental and regenerative approaches to modifying the plan and schedule.  
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To this end, a set of problems requiring planner/scheduler response to the addition of new 
objectives to the original plan is defined. Using a basic model of the Cyberland Scenario and 
starting with an initial preexisting plan/schedule accounting for 253 DMPIs in place, four 
additional objectives of increasing size were defined as a set of alternative triggering events, 
respectively adding 0, 8, 25, and 86 new DMPIs to the overall plan. For each new objective, 
resource capacity profiles were systematically varied to provide a continuum of problem 
instances ranging from low contention (100% level – specified as a level of assets sufficient to 
accommodate all DMPIs in the original plan plus the largest new objective) to high resource 
contention (50% level). The set of resource profiles used for various aircraft and munitions levels 
is shown in Figure 8.  For each of these problems, the set of tasks (DMPIs) reference a total of 11 
different “catcodes” (or target types), and a given catcode has 4 to 8 distinct weaponeering 
solutions (feasible aircraft/munitions pairs). For each problem instance, a 2-day scheduling 
horizon was assumed. Any tasks that cannot be accomplished in this time frame are dropped as 
unsupportable. Hence, solution quality for this set of experiments is considered to be a function 
of the number of tasks that are ultimately supportable. 

 

Figure 8. Resource Profiles for Experiment B  

 

In responding to a request to augment the plan to incorporate a new objective, the planner (in 
incremental plan repair mode) invokes a two-stage process:  

 First, an analysis is performed to determine which (if any) new objectives need to be added 
to the plan. The new objective may be already accounted for in the current plan – this is in 
fact what happens in the case of the smallest objective defined above (yielding 0 new tasks). 

 Second, subplans are expanded for any added objectives. 
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Since the planner will produce the same final plan in both regenerative and incremental mode, 
the only interesting point of comparison at this level is relative computation time.  Figure 9 gives 
these results for each of the four new objectives. As can be seen, the incremental approach is 
superior across all four problems despite the fact that there is some overhead to performing the 
analysis step. The incremental repair approach is a clear win, and there seems little reason to 
consider a regenerative strategy to modification. 

Figure 9. Computation Results at Planning Level 

 

The tradeoff between incremental and regenerative is not as clear cut at the scheduling level. 
Since the scheduler is optimizing heuristically, there will most likely be additional distinctions in 
performance from solution quality and solution stability standpoints. For purposes of this study, 
two different heuristic strategies are considered as a basis for determining the “most critical” task 
to schedule next: 

− Fewest resource alternatives first – this strategy prefers to next schedule the task that has 
the fewest number of resource alternatives (in this case corresponding to the task with the 
fewest number of weaponeering solutions). 

− Largest task first – this strategy prefers to next schedule the task that has the largest 
resource requirement (in this case corresponding to the task that will require the largest 
number of strikes). 

Each of these strategies is initially run in two different modes  (a third mode will be introduced 
later): 

− Regenerative – the current schedule is deleted and the entire scheduling problem is re-
solved after incorporating any new tasks produced by the planner in response to the new 
objective. 

− Incremental – the current schedule is kept intact, and new tasks introduced by the planner 
are scheduled (if possible) using existing excess resource capacity. 
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Figure 10 considers the computational tradeoff across different problems and resource contention 
levels. In these and subsequent graphs, the headings Assertion 2, Assertion 3 and Assertion 4 
correspond respectively to new objectives 2, 3, and 4 given to the planner. (Since objective 1 
yields no new tasks there is no rescheduling problem.) The following observations can be made: 

 

—  With sufficient excess capacity, the incremental strategy is always more efficient. 

—  As the size of the plan addition increases, the efficiency advantage of the incremental 
strategy diminishes. 
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Figure 10. Computational Tradeoff between Regenerative and Incremental Scheduler 

 

Figure 11 shows comparative results from the standpoint of solution quality (in this case 
percentage of tasks that are supportable). No significant difference can be seen between 
incremental and regenerative strategies along this dimension (and, in fact, in a few cases the 
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incremental strategy outperforms), but there is perhaps insufficient variability in problem 
structure across this set of problems (since all problems derive from the same base plan) to draw 
any strong conclusions here. With respect to heuristic strategies, the results indicate that fewest 
resources (i.e., weaponeering solutions) first outperforms as resource contention gets higher. 
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Figure 11. Solution Quality Tradeoff between Regenerative and Incremental Scheduler 

 

Finally, Figure 12 and Figure 13 give solution stability results for both heuristic strategies. The 
results show the number of changes to the initial schedule (scheduled times, reassigned 
resources, and alternative weaponeering solutions) that result from responding in regenerative 
mode. Recall that the incremental strategy keeps the solution intact and makes no changes. One 
interesting fact to note is that the fewest weaponeering solutions first strategy appears to be much 
less disruptive than largest task (DMPI) first. 
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Figure 12. Changes to Initial Schedule – Regenerative, Fewest Weaponeering Solutions First  
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Figure 13. Changes to Initial Schedule – Regenerative, Largest DMPI First 

 

The regenerative and incremental strategies tested above can in some sense be seen as extremes 
– that is, a strategy that resolves the problem completely (with the possibility of a completely 
different schedule) versus a strategy that does not change anything in the existing schedule. If it 
is assumed that individual tasks to be scheduled are not created equal but instead have associated 
priorities, then it is possible to define an incremental strategy that provides a less extreme (and 
possibly more useful) performance tradeoff. To explore this possibility, a third priority-based 
rescheduling strategy was defined and evaluated. In brief, the priority-based rescheduling 
strategy evaluated is defined as follows. New tasks are added into the current schedule 
incrementally as before, but in doing so any resource capacity that is currently allocated to tasks 
of lower priority than the one currently under consideration is considered as available for use by 
the current task (in which case lower-priority tasks will be preempted). The full procedure 
cascades, so that any preempted task will itself be rescheduled (if possible) and may preempt 
another still- lower-priority task in the process. 
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To evaluate this priority-based rescheduling scheme, priorities were randomly assigned to all 
tasks in the base plan (and hence all tasks in the current schedule). The new tasks associated with 
two of the new objectives, Assertion 2 and Assertion 3, were then assigned a higher priority than 
any task in the base plan/schedule (to ensure that they would indeed make it into the revised 
schedule). All other aspects of the original experimental design were left the same. We compared 
two sets of strategies: (1) prioritized, incremental rescheduling (as described above) and (2) 
prioritized regeneration (in which case the ordering heuristic is augmented to first consider 
priority and secondarily consider the base criterion). 

Figure 14 presents the computational tradeoff. As might be expected, there is a crossover point 
as resource contention increases where it becomes more efficient to simply regenerate than to 
selectively disrupt lower-priority tasks. The position of the crossover point appears to depend on 
the size (or proportion) of the requested change. 
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Figure 14. Computational Tradeoff – Priority-Based Scheduling 

 

Figure 15 shows relative performance from the standpoint of solution quality. Again, no 
appreciable difference is seen between incremental and regenerative strategies. 
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Figure 15. Solution Quality – Priority-Based Scheduling 

 

Figure 16 shows the percentage increase in the extent of solution change resulting from 
regenerative instead of incremental priority-based scheduling. The results are averaged over runs 
for Assertions 2 and 3. It can be seen that the incremental strategy indeed provides a viable 
middle ground with respect to maintaining stability in the plan. 
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Although the priority-based scheme tested above demonstrates a middle-ground with respect to 
balancing stability, solution quality and solution cost concerns, it is a heuristic strategy and it 
may be possible to improve it. One important aspect of the heuristic strategy is the approach 
taken to selecting which lower-priority tasks to “bump” when there are several alternative 
possibilities. The base scheme evaluated above uses an Interval-based approach to selecting a set 
of tasks to bump. In brief, the heuristic performs a “left-to-right” scan of a given resource profile 
over the interval where capacity is required, collecting lower-priority tasks based strictly on task 
priority and amount of capacity required. Analysis of this heuristic has led to the design of an 
improved Task-based approach. Under this task-based scheme, lower-priority tasks are selected 
from the resource profile in a more opportunistic fashion, based on a combination of priority and 
“best fit” from a required resource area perspective. The reader is referred to [Zhou and Smith 
2001] for full technical details. 

Figure 17, Figure 18, and Figure 19 show comparative results of these two pre-emption strategies 
(labeled “original” and “new”) along computational, solution quality, and solution stability 
dimensions. The new task-based approach is seen to incur a greater computational cost and yield 
roughly the same quality solutions (in terms of number of DMPIs accomplished. However, with 
this slight increase in computation time (a few seconds on the largest problem tested), there is a 
significant, across the board improvement in solution stability with no appreciable difference in 
solution quality. It seems clear that Task-based approach gives rise to a stronger overall priority-
based scheduling mechanism. 

B B B

B B B B
B B B B

J J J

J J J

J J J J J

0

2

4

6

8

10

12

Resouce Profiles (percentage of sufficient capacity)

B Original Bumping

J New Bumping

Assertion 2 (8/253 = 3%)

B B

B
B B B

B B B B
B

J J

J
J J J

J

J J J

J

0

2

4

6

8

10

12

Resource Profiles (percentage of sufficient capacity)

Assertion 3 (25/253 = 10%)

 

Figure 17: Computational Tradeoff between Interval-based andTask-based Pre -emption Strategies 
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Figure 18: Solution Quality Tradeoff between Interval-Based and Task-Based Pre -emption 
Strategies 
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Figure 19: Stability Tradeoff between Interval-Based and Task-Based Pre -emption Strategies 

 

6.4.2. Experiment B2: Response to Loss of Resource Capacity 

The study described above considered a “top-down” response to the introduction of new 
objectives, and was concerned with understanding the reactive behavior of each component in 
this context. No attempt was made to feed back any “unsupportable” missions that resulted from 
the plan/schedule modification process (although the strategy explored in Experiment A is 
directly relevant here as well). 

In this section, we undertake a complementary analysis of interleaved planning and scheduling 
strategies for “bottom-up” response to such events as a reported loss in resource capacity. In this 
case, it may be possible to do some amount of reallocation so as to minimize impact on the plan 
itself. However, for large enough disruptions to resource availability, modification of the plan 
will be inevitable. In general, we assume the following interleaved process for response to 
resource status updates1: 

                                                 
1 We restrict attention here to a reactive process aimed at cases where unexpected events have caused the 
planning/scheduling constraints to become tighter (and the solution is no longer feasible). Note however, that the 
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A. Invoke Schedule Repair Process – First, determine the set of affected (i.e., now 
unsupportable) tasks, and then reallocate resources as possible to (at least partially) 
absorb the disruptive event 

B. Invoke Plan Repair Process – If there are remaining unsupportable tasks, modify the 
plan to reduce demand for over-subscribed resources 

C. Invoke Schedule Repair Process – Revise the schedule to excise outdated tasks and 
integrate new plan fragments 

D. Iterate steps B and C as necessary 

Within the above process for reacting to unexpected events, the types and amount of information 
that is communicated between scheduler and planner orients the overall repair strategy and can 
be expected to have an impact on the effectiveness of the plan/schedule repair results. In the B2 
experiment summarized below, we evaluate two specific repair strategies: 

− Intensity-Driven – This approach, driven by the planner, determines an appropriate 
planning response by evaluating the current demand in the schedule, selecting an 
objective (or set of objectives) to reconsider in an attempt to help resolve any shortfall 
caused by the resource failure, and modifying the corresponding subplan(s). 

− Resource (Task) Driven – This approach, driven by the scheduler, applies a set of 
heuristics to localize the impact of the resource failure and passes that affected set of 
tasks to the planner to suggest the area of the overall plan in which to replan. 

Within either approach, various heuristics can be employed to localize the impact of a resource 
failure, depending on whether planning or scheduling concerns are considered. To favor an 
intensity-driven (i.e., planning) perspective, the scheduler can attempt to localize unscheduled 
tasks according to the number of objectives that will be affected or the size of any affected 
objectives (in terms of number of constituent tasks), in an attempt to minimize the required effort 
by the planner. From a resource or task driven (i.e., scheduling) perspective, the attempt can be 
made to limit schedule disruption by minimizing the number of unscheduled tasks and/or 
minimizing the number of time, base, and weaponeering-solution changes that would result from 
any rescheduling of the affected tasks. In the experiment performed, we coupled an 
“unscheduling” heuristic aimed at minimizing the number of objectives affected with the 
intensity-driven strategy, and a heuristic for minimizing the number of tasks unscheduled with 
the resource-driven strategy. 

To evaluate these two strategies, a set of problems requiring planner/scheduler response to the 
loss of aircraft capacity assumed in the original plan was defined. Using the same 253 DMPI 
Cyberland plan used as a base in Section 6.4.1 as the starting point, five failure cases involving 
the loss of increasing amounts of aircraft capacity were defined. Each strategy was used to 
respond to all five repair problems. 

Figure 20 and Figure 21 characterize the relative computational efficiency of the two strategies. 
Both the number of planner/scheduler iterations and the computation time required for successful 
repair can be seen to increase as the magnitude of the resource capacity loss is increased. 

                                                                                                                                                             
process could easily be generalized to cover circums tances where the constraints on the plan/schedule have 
unexpectedly loosened and there are now opportunities to improve the plan/schedule. 
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However, with the exception of the one boundary (minimal loss) case, the resource-driven 
strategy consistently outperforms the intensity-driven approach. 

Figure 20: Number of Planner/Scheduler Iterations for Resource-Driven and Intensity-Driven 
Repair 

 

Figure 21: Time for Resource-Driven and Intensity-Driven Repair 
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Figure 22 shows the reduction in number of DMPIs that results from both resource-driven and 
intensity-driven repair strategies. In this respect, we see that the intensity-driven approach 
performs better, yielding an equivalent or smaller reduction in all cases. 
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Figure 22: Reduction in DMPIs Covered for Resource-Driven and Intensity-Driven Repair 

Finally, Figure 23 shows the comparative levels of change, from original schedule to final 
schedule, for both the intensity-driven and the resource-driven approaches. Here we see that the 
resource-driven approach produces a more stable (i.e., non-disruptive) repair with respect to the 
set of tasks common to both initial and final solutions. 

6.4.3. Summary 

Broadly speaking, the B1 Experiment confirmed our hypothesis with respect to the incremental 
integration of new objectives into an existing plan: incremental strategies were generally found 
to be more efficient and less disruptive than regenerative strategies, without substantive 
degradation in solution quality. The computational advantage of the incremental strategy was 
found to diminish as the level of resource contention and the relative size of the new plan 
addition increases. The crossover point is reached sooner in the case of priority-based solution 
change. With regard to solution stability, the expected continuum with respect to localization of 
change was confirmed. As a side result, our analysis of priority-based solution change led to the 
definition of a much more effective task-based strategy for pre-emption. The somewhat 
surprising result that incremental rescheduling was not seen to adversely affect solution quality is 
perhaps attributable to the greedy nature of the search that is conducted by the scheduler in both 
regenerative and incremental modes. 
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Figure 23: Schedule Stability for Resource-Driven and Intensity-Driven Repair 

 

The B2 Experiment showed generally that a scheduler-driven repair strategy focused on tasks 
that have been found difficult to schedule leads to more streamlined interaction and a more 
efficient overall repair process than a planner-driven strategy that seeks to reduce resource 
intensity for subplans with resource contention.  The intensity-driven approach, alternatively, 
was seen to preserve greater portions of the original plan and generally to get more accomplished 
with available resources. Finally, as might be expected, the scheduler-driven approach was found 
to cause less disruption in the schedules of those tasks common to both the initial and final plans. 

The relative ineffectiveness of the planner-driven approach to plan/schedule repair was not 
expected.  These results suggest that the single-dimensional approach to modeling the resource 
intensity of various planning alternatives may not be sophisticated enough to provide adequate 
guidance for repair.2  The next section considers the design and evaluation of a more refined 
approach to representing and reasoning with resource intensity information. 

 

 

 

 

                                                 
2 The B2 Experiment considered only a small set of failure cases tied to specific types of resource unavailability.   
As such, these results may not reflect general behavior. 
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7. Experiment C: Multidimensional Quantitative Intensity Model 

This section describes a third integration experiment designed and performed to evaluate the 
advantages of a multidimensional approach to modeling resource intensity. The description 
provided below conforms to the documentation format provided by the JFACC program. 

7.1. Statement of Experimental Objectives 

7.1.1. Hypothesis  

Tightening the representational coupling between a planner and scheduler will increase further 
the benefits of considering resource allocation issues during planning.  

Level: Process Experiment 

Description:  

Experiment A confirmed the hypothesis that the early consideration of resource allocation issues 
during planning can improve efficiency substantially. This experiment extends those 
investigations by exploring a richer representation for supporting cooperation between the 
planner and scheduler during the plan generation and repair processes.  

The earlier experimentation focused on a simple qualitative model of expected resource usage 
grounded in a single aggregated intensity number. In contrast, Experiment C explores a 
multidimensional quantitative approach that models expected resource usage at a finer level of 
granularity. In particular, resources are grouped into functional categories intended to capture 
similarities in how resources are applied. These groupings provide an aggregation over the 
individual resource classes, thus simplifying the resource models inherent to the scheduler; 
however, the aggregation has greater detail than the individual number afforded by the single-
dimensional intensity model and so would be expected to have improved predictive value for 
estimating resource usage.  

The main experiments in this set will compare the time required to generate a scheduled plan by 
the single-dimensional, multidimensional, and waterfall approaches. The multidimensional 
approach incorporates several control parameters that can be adjusted to tune its behavior; 
additional experiments will evaluate the sensitivity of the approach to each. 

7.1.2. Value 

This experiment set enhances the benefits to command and control outlined for Experiment A in 
Section 5.1.2. The higher-fidelity approach to resource summation will reduce further the time 
taken to produce quality plans and schedules. This improved capability will in turn enable 
commanders to explore an even greater number of courses of action.  

 

7.2. Description of Experimental Setup 

7.2.1. Simulation Features 

This experiment did not require a simulation environment and so was conducted independently 
of the Enterprise Models. 
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7.2.2. Variables or Correlated Parameters  

Major independent variables: resource availability. The multidimensional technique relies on a 
number of control parameters; sensitivity of the approach to each will also be evaluated.  

7.2.3. Specification of Test Runs  

The improvements yielded by the higher- fidelity coupling will depend on the degree of resource 
constrainedness of the underlying problem: greater benefits should result for problems where 
resources of a particular category run short. The experiment set takes this factor into account by 
considering resource availability profiles that provide qualitatively distinct points along the 
spectrum of resource constrainedness. For several points along this spectrum, we define a 
distribution of resource profiles and compare both the single and multidimensional approaches.  

System performance is measured in terms of the computation times required for plan/schedule 
generation across various test runs, the number of planner/scheduler interactions required, and 
the quality of the resulting scheduled plans. 

 

7.3. Results  

7.3.1. Overview of the Multidimensional Intensity Approach 

To provide the necessary context for the subexperiments that constitute Experiment C, we begin 
by describing more fully the multidimensional method.  

7.3.1.1. Multidimensional Intensity Model 

The multidimensional approach employs the same basic strategy for intensity adaptation in 
response to scheduler feedback that was described in Section 5.3. The main difference between 
the single-dimensional and multidimensional methods lies with the model of actual and expected 
resource usage that underpins the communication between the planner and scheduler.  

In the single-dimensional approach, planning strategies are annotated with a single intensity 
value that reflects a qualitative indication of their relative resource usage in comparison to other 
strategies for the same task.  The weakness of that approach lies with its lack of granularity. To 
see why, consider a situation with relatively low overall resource demand, but where the class of 
resources required to hit a specific type of target is nearly exhausted.  The single-dimensional 
case would not be able to adjust strategy selection to adapt to the shortage because there is an 
overall abundance of resources.  In contrast, because the multidimensional model can represent a 
lack of capacity for specified groups of resources, strategy selection could be adapted to prefer 
approaches with minimal demand for the oversubscribed resource.    

Table 1 summarizes the four intensity dimensions employed in the experiments. Each dimension 
is defined by a group of munition types and the aircraft types that can carry those munitions. The 
unguided category corresponds to “dumb” or “gravity-guided” munitions that can be deployed 
from any of the available aircraft. Precision munitions require sophisticated guidance machinery 
on the delivery aircraft, a constraint that in turn limits the types of aircraft that can deploy them. 
Cluster munitions are chiefly antipersonnel and antiarmor munitions that can be carried by a 
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specialized subset of the available aircraft.  Defense munitions are used in SEAD missions and 
can be deployed only by aircraft fitted with sophisticated radar detection equipment.  

 

Intensity 
Dimension 

Aircraft Type Munitions 

Unguided F-1, F-2, F-3, F-4, H-1A MK1, AGM1 

Precision F-3, F-4, H-1A MK2, AGM4 

Cluster F-3, F-4, F-2, F-1 Cluster1, Cluster2 

Defense F-4 AGM2 

 

Table 1. Air Operations Intensity Dimensions  

 

As can be seen from Table 1, the dimensions are not mutually exclusive. For example, F-3s 
appear in all but the Defense dimension, reflecting the fact that those aircraft can be used to fly 
different types of mission.  This connectivity introduces additional complexity into the 
multidimensional intensity adaptation process, since decisions related to one dimension can 
impact results for other dimensions. 

7.3.1.2. Resource Capacity Model 

Resource availability and usage is measured in terms of capacity.  As defined in Figure 26, capacity 
for a given aircraft type A is defined to be the product of the number of available aircraft of type A, 
the DMPI-Rate for A, and the overall duration of the operation. 
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OpDurationARateDMPIACountACapacity ↔−↔= )()()(  
 

Count(A): number of available aircraft of a given type 

DMPI-Rate(A):  DMPI prosecution rate for a given aircraft type 

OpDuration: duration of operation 

 

Figure 24. Aircraft Capacity Determination 

 

The definition of capacity for a particular intensity dimension is grounded in the capacity for each 
aircraft type within the dimension. Those capacities must be adjusted, however, both to reflect the 
overlap in aircraft type among intensity dimensions (as noted above) and to reflect the expected 
relative contribution of each dimension to the overall plan size. For example, if one dimension is 
expected to yield two-thirds of the resource requirements within a plan, its capacity should be 
adjusted to reflect that bias. To this end, we employ allotment factors to define the relative 
proportion of resources that should be accorded to each dimension. Table 2 summarizes the baseline 
allotment weights used within our experiments. 

 

Intensity 
Dimension 

Allotment Weights 

Unguided .35 

Precision .05 

Cluster .35 

Defense .25 

Table 2. Baseline Allotment of Resources to Dimensions  

It should be noted that the allotment weights need only be rough approximations; furthermore, it is 
reasonable to expect that a commander would have a good sense of the relative distribution of 
resources among the different target types. Experiment C5 investigates the sensitivity of the 
multidimensional intensity adaptation method to the allotment values. 

The capacity for an intensity dimension is defined to be the sum of the capacity for each aircraft type 
in the dimension, scaled in accord with the allotment factor that weights resource distribution for the 
dimension: 
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7.3.1.3. Multidimensional Adaptation Method 

For the multidimensional intensity approach, the incorporation of resource information to guide 
the selection of planning strategies involves three steps. First, for a given subplan, the target 
intensity for each dimension must be determined, based on the resources available and the 
number of subplans that remain to be generated. Second, for a given planning decision, each 
applicable planning strategy must be rated according to its resource requirements in each 
intensity dimension. Third, with each available strategy labeled with its resource intensity and 
the ideal intensity given current resource usage calculated, the closest planning strategy to the 
ideal is determined. Each stage in this process is described in detail below. 

 

Target Intensity 

The target intensity, denoted by IT, represents the expected ‘ideal’ use of resources for a 
particular subplan, relative to current availability and expected demand. Calculation of the 
multidimensional target intensity specializes that of the single-dimensional approach (presented 
in Section 5.3) to each dimension.  The intensity for a given dimension is defined in terms of the 
ratio of the resources available per remaining subplan to the resources allotted originally to each 
subplan; this ratio is then normalized relative to the interval of intensity values in use (namely, 
[0, TopIntensity] ).  

Let Capacity(Ij) be the overall capacity for resources in dimension j and let Rj
i be the remaining 

capacity for dimension j after the first i of n subplans have been created and scheduled. The 
following equation defines the target intensity IT for the i+1st subplan:  
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Provided that resource usage remains below allotment levels, the value of Ij
T will exceed 

TopIntensity. Values below TopIntensity indicate that planning choices should seek to decrease 
demand for resources within that dimension below the original allotment level.   

 

Operator Intensity  

Figure 25 presents the equations for the intensity of a planning operator Ok , which is denoted  by 
IOi. The intensity for each dimension is defined to be the ratio of the expected resource demands 
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introduced by the operator to the original allotment of resources for that subplan and dimension 
(assuming uniform allotment among subplans). 
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Figure 25. Multidimensional Operator Intensity 

For the air operations domain, the resource demands of an operator are measured in terms of the 
expected munitions and aircraft required to prosecute the targets associated with the operator. 
These estimates are calculated by summing the expected number of DMPIs of a given type 
multiplied by a capacity estimate for the type. For example, the strategy of attacking the 
maneuver and armor capabilities of a ground force may have an estimate of one DMPI per tank 
and three DMPIs per bridge.  

 

Operator Ranking  

The first two steps of the selection process yield a vector of target intensity values (IT) together with 
a set of applicable planning strategies, each labeled with a vector of required intensity values (IOk). 
Each applicable operator is assigned a rating that scores how closely the operator’s intensity 
requirements match the target intensity values. Operator selection then reduces to identifying the 
operator with the best rating.  

Figure 26 presents our scheme for ranking operators according to their proximity to the target 
intensity values. The ranking method builds on the intensity difference vector DOk= IT-IOk, which 
gives the difference between the target intensity and operator intensity vectors.  The operator rating, 
denoted by Rating(Oi), is defined to be the sum of the magnitudes in the intensity difference vector, 
adjusted by a penalty factor.  

In cases where the difference value dj is positive (i.e., the operator requires fewer resources than 
indicated by the target intensity), the penalty is defined by P+; in cases where dj<0 (i.e., the operator 
is expected to use more resources than indicated by the target intensity), the penalty is defined by P-.  
Through appropriate settings of the ratio of these penalty factors, different strategies can be defined 
that penalize resource overutilization/underutilization to different degrees.  
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Figure 26. Operator Ranking 

 

With this rating scheme, the operator with the lowest rating will be preferred. 

 

7.3.2. Experiment Setup 

7.3.2.1. Test Domain  

Experiments A and B built on a domain model for establishing air superiority that SRI developed 
prior to the start of this phase of the JFACC program.  The main objective in developing that 
domain was to provide a high-fidelity characterization of a key component of air operations in 
order to demonstrate the suitability of our automated planning tools for this type of application. 
In particular, support for experimentation was not a consideration in the development of the air 
superiority domain.  

For Experiment C, we developed a complementary domain that covers ground-force interdiction 
missions.  Two goals motivated the construction of this new domain. First, it was designed 
explicitly to support experimentation, while also maintaining reasonable fidelity to the 
operational problem. In particular, the complexity of the domain can be more readily controlled, 
enabling the experiments to uncover the sensitivity of a planner method to subtle changes in 
problem structure. Second, the new domain provides the opportunity to demonstrate the value of 
our intensity-based planner/scheduler methods for different types of problem.  

The ground- interdiction domain employs the same basic target network model that underlies the 
original air superiority domain. Objectives within this domain reduce to the task of neutralizing 
enemy capabilities organized as networks of targets. Here, each network corresponds to an 
enemy ground-force unit with maneuver, personnel, armor, and artillery components. We 
provide several strategies for attacking networks: attacking all components, attacking a coherent 
subset of capabilities (e.g., heavy weapons – armor and artillery), or attacking just a single 
capability.  

Our primary test problem for this domain involves interdiction of ground-force units. The 
problem yields plans with 8 subplans and from 50 to 724, actions depending upon the 
aggressiveness of the planning strategies applied. As part of our experimentation process, 
however, we consider variants of this main problem that involve different numbers and structures 
of forces, resulting in a broad variety of plans and schedules. 

This new problem domain required the definition of a corresponding set of resource profiles to 
match the scope and types of operation produced by the planner. Figure 27 summarizes the set of 
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resource profiles used throughout Experiment C. For simplicity, we varied aircraft availability 
only; sufficiently large numbers of munitions were made available to avoid any munition-based 
resource conflict. The maximum or 100% profile provides just sufficient resources to support the 
maximum plan; the profiles then decay gradually until there are insufficient resources to support 
the minimal plan. In addition, the experiments employ a profile called ‘Big’ that contains a large 
amount of all aircraft resources relative to the maximal plan.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Experiment C Resource Profiles  

 

7.3.3. Overview of experiments 

Experiment C consists of five related experiments designed to evaluate the multidimensional 
intensity adaptation method. 

The main experiment (C1) examines the performance of the multidimensional approach relative 
to the single-dimensional and waterfall methods on the primary ground- interdiction problem. For 
performance, we consider three main factors:  generation time, plan size, and number of 
planner/scheduler interactions.  As noted above, we use plan size as a ‘stand- in’ for evaluation 
plan quality; this approach derives from the philosophy that, for a given allotment of resources, a 
given commander will seek to maximize the aggressiveness of his plan as a way of increasing the 
likelihood of satisfying his objectives. 

To ensure the generality of our results, we performed two experiments that vary the basic 
problem under investigation. One variation involves changing the distribution of sizes of ground-
force networks, resulting in subplans with differing structures and numbers of actions (C2). The 
second variation considers changes in the degree of interdependency among ground-force 
networks (C3).  
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Our final experiments in set C evaluate the sensitivity of the multidimensional method to its two 
main classes of parameters, namely  resource overutilization/underutilization penalties (C4) and 
resource allotment weights (C5).  

 

7.3.4. Experiment C1: Comparison of Waterfall, Single -dimensional, and Multidimensional 
approaches 

Experiment C1 tests the hypothesis that the multidimensional approach will require less 
generation time than the single-dimensional method, without significantly impacting solution 
quality. Comparisons with the waterfall approach are included to provide further insights into the 
benefits of resource feasibility checking during planning. 

Figure 28 shows the results for Experiment C1. The upper-left graph displays generation times in 
log scale for the three methods; the upper-right graph shows linear times for the single-
dimensional and multidimensional cases. As can be seen, the waterfall method requires 
substantially more time once resources become constrained, while the intensity-based methods 
perform much better.  As the linear-scale graph clearly shows, the multidimensional approach 
outperforms the single-dimensional approach, with the advantage increasing as resource 
availability drops.  The bottom-left graph displays the number of interactions between the 
planner and scheduler required to find a solution. As with generation time, these results show 
that the multidimensional method outperforms the single-dimensional method, and that they both 
are far superior to the waterfall method as resources become more limited. Together, these 
results confirm the first part of the hypothesis for Experiment C, namely that the 
multidimensional approach would be faster. 

These results show an impressive speedup by the intensity adaptation methods over the waterfall 
baseline. The tests used a scaled-down version of the domain in which goals that did not involve 
intensity decisions were limited to a single applicable operator.  As such, the waterfall 
backtracking was limited to the same choices as the intensity adaptation methods. A side 
experiment was run where nonintensity goals had two applicable operators rather than just one.  
Runtimes for the intensity methods were virtually identical to those in Figure 28, since the 
intensity method backtracks at the level of intensity values rather than operators (hence, it is not 
impacted by the additional operators). In contrast, the waterfall method was unable to find a 
solution below the 100% resource profile after 239 trials and almost 30 hours of runtime. The 
waterfall method fails so badly in this larger problem because many planning decisions must be 
backtracked through to reach one that impacts resource usage significantly. 
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Figure 28. C1 Results: Comparison of Waterfall, Single-dimensional and Multidimensional Method 

 

The waterfall approach produces slightly larger plans than the intensity-based methods for the 
100% through 50% profiles; as resource availability decreases further though, it produces 
smaller (i.e., less aggressive) plans than the intensity-based methods.3  In comparing runtimes, it 
is clear that the small increases in plan size for the waterfall method come at the cost of an 
increase of several orders of magnitude in planning/scheduling time. While there is some 
variation between the single-dimensional and multidimensional methods in plan size, the 
difference is relatively small.  Overall, these results confirm the second part of the hypothesis of 
Experiment C:  the performance benefits realized by the multidimensional approach do not 
adversely impact solution quality. 

 

7.3.5. Experiment C2: Sensitivity to Subplan Structure  

The problem used in Experiment C1 considered a set of ground-force networks of equivalent size 
and composition.  In resource-rich cases (e.g., the Big profile), the generated subplans would  

 

                                                 
3 As explained in Section 5.3, the waterfall method will not always find the largest plan. 

Waterfall Single Multi
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Figure 29. Problem Topologies for C2 Experiments  

 

have uniform structure and size. In more resource-constrained runs, however, the need to react to 
resource shortfalls would yield variations in subplan structure and size. 

To test the sensitivity of the multidimensional approach to subplan structure, we ran the single-
dimensional and multidimensional tests described in Experiment C1 on two additional problems.  
The topologies for the plans that they produce for the ‘Big’ profile are shown in  

Figure 29. “Uniform” corresponds to the problem from Experiment C1. “Mixed-1” contains two 
large and one small subplan together with five of the same size as those used in the “Uniform” 
case. The “Mixed-2” problem contains three small, one large, and four of the same size as those 
used in the “Uniform” case, with the large subplan appearing late in the plan. 

The tables in Figure 30 summarize the generation time and plan size for all three problem 
topologies; Figure 31 and Figure 32 provide graphical displays of the generation time, plan size, 
and number of interactions for the Mixed-1 and Mixed-2 problems, respectively. In Figure 30, 
entries marked by “*”indicate that the case ran for more than 24 hours without finding a solution; 
bold entries mark the best result for a given problem.  The Mixed-1 entry for the 10% resource 
profile is greyed out in all cases; that profile lacks sufficient resources to solve the Mixed-1 
problem within the operational time window imposed for the planning/scheduling problem. 

The nonuniform problems proved to be a bit more difficult for the multidimensional approach to 
solve, resulting in slightly more planner/scheduler interactions and higher generation time 
relative to the uniform case.  In contrast, the single-dimensional approach shows much more 
sensitivity to nonuniform subplan topologies for generation time, especially at the lower resource 
profile levels. The variations in topology have only minimal impact on plan size for the intensity 
methods.  The waterfall method fared much worse than the intensity methods on both of the 
nonuniform problems.   In particular, the waterfall method was unable to find solutions to the 
Mixed-1 problem for any but the Big resource profile. The lack of success for the waterfall 
method on the Mixed-1 stems from the need to backtrack a long way to reach the subplans with 
significant resource usage.   

In summary, the C2 results confirm the general conclusion from Experiment C1 that the 
intensity-based methods far outperform the waterfall method without degrading solution quality. 

 

Uniform: 50 – 724 activities

Mixed-1: 61- 826 activities

Mixed-2: 46- 672 activities

Uniform: 50 – 724 activities

Mixed-1: 61- 826 activities

Mixed-2: 46- 672 activities
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Generation Time  
  Big 100% 75% 50% 25% 15% 10% 

Uniform Multi 291 254 196 134 120 90 175 

 Single 277 268 226 242 171 220 858 

 Waterfall 213 266 2827 6844 8061 8223 8223 

Mixed-1 Multi 327 256 204 138 107 187  

 Single 324 235 231 191 222 2066  

 Waterfall 247 * * * * *  

Mixed-2 Multi 278 255 281 172 124 89 335 

 Single 264 277 297 283 499 336 5821 

    Waterfall 222 222 4194 15474 16814 16991 16991 

 

Plan Size  
  Big 100% 75% 50% 25% 15% 10% 

Uniform Multi 724 636 504 348 164 90 72 

 Single 724 592 504 348 190 106 72 

 Waterfall 724 721 554 368 174 54 54 

Mixed-1 Multi 823 629 497 331 187 105  

 Single 823 603 471 313 183 105  

 Waterfall 823 * * * * *  

Mixed-2 Multi 677 589 465 355 160 104 132 

 Single 677 612 501 323 179 106 72 

    Waterfall 677 612 501 323 179 106 72 

 

Figure 30. C2 Results: Uniform, Mixed-1, and Mixed-2 Topologies 
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Figure 31. C2 Results: Problem Mixed-1 
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Figure 32. C2 Results: Problem Mixed-2 
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7.3.6. Experiment C3: Sensitivity to Subplan Interdependencies  

The test problems used in Experiments C1 and C2 lacked any strategic dependencies among 
subplans at the planning level. In particular, the only interdependencies among these subplans 
arose at the scheduler level as a result of resource contention. Experiment C3 focuses on 
evaluating the sensitivity of the intensity adaptation methods to interdependencies among 
subplans. 

The experiment emphasizes one specific type of interdependency, namely goal phantomization. 
Phantomizations occur when actions in one part of a plan have the beneficial side effect of 
achieving objectives in other part(s).  For example, a plan may contain one objective to prevent 
red ground forces from reaching a particular border sector and second to prevent red attacks on 
infiltrating blue forces in a nearby area.  In such a situation, it could be that destroying a certain 
bridge will facilitate achievement of both objectives.  Thus, an action in the subplan for the first 
objective would have the beneficial effect of helping to achieve an objective in a different 
subplan.  

To enable experimentation with phantomized goals, the domain model was modified to include 
SAM sites that protect multiple targets. Degrading a SAM as part of attacking one target would 
then have the side effect of removing the air defense from other targets defended by that same 
SAM. To focus on the impact of phantomization, only the resources needed to attack SAMs were 
constrained; sufficient munitions were provided to attack all ground targets.  An inability to 
identify a potentially phantomized SAM at intensity computation time can lead to the mistaken 
assumption that additional resources will be needed to neutralize the SAM; if SAM striking 
resources are running low, the planner may conservatively choose to avoid that target by 
selecting a less- intense planning strategy.  

Four problems were defined, each with increasing degrees of phantomization. The number of 
SAMs that protect two targets varied through 0, 6, 12, and 18; all other SAMs protect only one 
target.  The range of resource profiles considered provides one, two, and five SAM-striking 
aircraft (F4s).  Figure 33 presents the generation time, planner/scheduler interactions, and plan 
size results for all combinations of the four problems and three resource profiles. The labels for 
the x-axes embed the number of F4s in the resource profile and the number of SAM overlaps in 
the test problem.   

For the cases involving five and two F4s, variations between the single- and multidimensional 
cases are relatively small.  When there is only a single F4 available, however, substantial 
differences arise.   Here, the single-dimensional approach takes substantially more time and 
requires many more interactions than does the multidimensional approach.   In this situation, the 
multidimensional approach is able to determine early on that there is a shortfall of a critical 
resource (i.e., F4s), and it adjusts intensity accordingly to avoid overusing that resource.   In 
contrast, the single-dimens ional approach cannot distinguish F4s from other resources and so 
attempts to be much more aggressive in its planning strategy.  This causes the significant 
increase in generation time and interactions; it does, however, have the beneficial side-effect of 
yielding somewhat larger plans.  
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Figure 33. C3 Results:  Evaluation of Phantomization Effects  

 

7.3.7. Experiment C4: Sensitivity to the Resource Overutilization Penalty 

As noted in Section 7.3.1.3, the parameters P+ and P- (see Figure 26) can be adjusted to vary the 
penalty for resource overutilization and underutilization by operators relative to the established 
target intensity. In particular, the ratio of P+ to P- defines the relative importance accorded to 
resource underutilization/overutilization. 

Experiments C1 through C3 used the values P+ =1 and P-= 1. To assess the sensitivity of the 
multidimensional approach to these values, we ran the multidimensional strategy with P+ fixed at 
1, but with P- ranging from 0.5 to 4. Figure 34 displays the results.  

For P-=4 (and to some extent, P-=3), there is a noticeable drop in plan size for the 100% through 
50% profiles. For P-=.5, generation times and the number of planner/scheduler interactions are 
appreciably higher over that same range. Such results are to be expected: when resource 
overutilization is penalized relative to underutilization (i.e., P-/P+ > 1), the intensity adaptation 
process will be more cautious, resulting in a tendency toward smaller plans. In contrast, when 
resource overutilization is favored relative to underutilization (i.e., P-/ P+ < 1), the intensity 
adaptation process will be more aggressive in its strategy selection, possibly resulting in the need 
for more backtracking due to overly aggressive strategy choices. 

We had expected to see more dramatic variation as P- changed but the adaptive nature of the 
intensity method appears to compensate for overly aggressive or weak decisions induced by 
large/small penalty ratios. This robustness makes the intensity adaptation approach strongly 
insensitive to reasonable values for parameters P- and P+. 
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Figure 34. C4 Results: Sensitivity of the Multidimensional Approach to P- 

 

7.3.8. Experiment C5: Sensitivity to Resource Apportionment Parameter 

As discussed in Section 7.3.1.2, capacity determination for each intensity dimension relies on an 
allotment weight that reflects the commander’s expectation for relative proportion of resources 
that will be required for each.  Because these allotment weights are an integral part of the 
capacity calculations, we designed Experiment C5 to evaluate the sensitivity of the intensity 
adaptation method to these values.   

Table 3 shows the range of apportionment distributions considered in this experiment. The 
ordering of the cases from left to right reflects (roughly) increasing allotment to Precision 
resources and decreasing allotment to Unguided, Cluster, and Defense resources. Case 3 
corresponds to the baseline allotment weights employed in experiments C1 through C4. This 
baseline was selected as being fairly representative of the distribution of resources for the 
maximal possible plan (i.e., the plan produced by the Big resource profile). Cases 1 and 2 
correspond to situations where Unguided resources have been increased somewhat at the expense 
of the other three dimensions.   Cases 4 through 8 proceed from gradual through to substantial 
changes away from the baseline allotment. 
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 Case 1 

 

Case 2 Case 3 
(Baseline) 

Case 4 Case 5 Case 6 Case 7 Case 8 

Unguided 45% 38% 35% 35% 30% 25% 15% 5% 

Precision 5% 2% 5% 15% 15% 25% 35% 85% 

Cluster 30% 35% 35% 30% 30% 25% 15% 5% 

Defense 

(SEAD) 

20% 25% 25% 20% 25% 25% 35% 5% 

 

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

 

Case 7 Case 8 Unguided

Precision
Cluster
Defense

 

 

Table 3: Resource Allotment Factors for C5 Sensitivity Testing 
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Figure 35. C5 Results: Sensitivity to Resource Apportionment Weights  

 

Figure 35 presents the results for Experiment C5.  Overall, they show only minor sensitivity to 
the allotment weights.  As with the testing of sensitivity to P- in Experiment C4, the explanation 
for this insensitivity is the adaptive nature of the intensity method.  Even the extreme Case 8 
behaves reasonably well, despite its significant deviation from the baseline.  For this case 
though, there is a noticeable drop in both plan size and generation time; these are to be expected, 
as the low allocations for Unguided, Cluster, and Defense would lead to conservative target 
intensities for those dimensions.  Hence, the planner would be underallocating resources for 
those dimensions, yielding significantly smaller plans than is possible. 

One aspect of the graphs does stand out, namely the spikes in generation time and interactions in 
Case 1 for the 15% profile, and Cases 1 through 3 for the 10% resource profile.  These spikes 
indicate more aggressive strategy than pursued by the other cases for the resource profile.  To 
some extent, this aggressiveness is rewarded with slight increases in plan size.   If reduced 
generation time is considered more important than plan size, these results indicate that different 
resource allotments may be preferable.  Again, though, the overall difference among the cases is 
relatively small, thus demonstrating the robustness of the intensity method with respect to 
apportionment weights.  
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8. Conclusions  

Tightly coupled integration of planning and scheduling is essential for effective coordination and 
agile response in large-scale, dynamic problem domains.  Current approaches to automating 
these functions treat them as separable tasks, which frequently leads to gross inefficiencies, poor 
coordination, and suboptimal operations. 

The JFACC planner-scheduler work summarized by CMU and SRI in this report has developed 
and evaluated a number of techniques and strategies for increasing the coupling between 
automated planning and scheduling systems, and achieving the performance benefits of such 
tighter interleaving. We have focused specifically on the complex domain of air operations 
planning and scheduling, and in this domain, we have shown how incremental plan synthesis and 
resource allocation can speed up the problem-solving process and provide greater stability in the 
plans/schedules generated over time without compromising the overall quality of the solutions 
generated. At the same time, the techniques we have investigated have broader applicability. 
They are relevant to any resource and time constrained planning domains where scale and 
complexity prohibits systematic exploration of all possibilities and practical solutions must rely 
on incomplete (approximate) search procedures. 

To couple planning and scheduling processes, one principal approach explored in this work is 
grounded in the use of intensity models of expected resource usage. The basic concept is to 
associate estimates of the expected resource usage with different planning options, and then to 
use these estimates in conjunction with resource utilization information derived by the scheduler 
to bias and (as necessary) redirect the plan generation and repair process. This intensity-driven 
approach to planner/scheduler integration illustrates one way to capitalize on early visibility of 
resource availability constraints and likewise provides the means to focus replanning effort when 
execution events (e.g., loss of resource capacity) force changes to the current plan and/or 
schedule. As shown through the experimental results described in this report, these techniques 
provide superior performance over a waterfall integration of planning and scheduling 
technologies, both in terms of reduced generation/repair times and improved plan quality.  These 
benefits are particularly noticeable in highly resource-constrained situations.   

One potential problem with the intensity-based method is the reliance on a few key problem-
specific parameters.  Our experimentation showed, however, that the intensity approach is 
relatively insensitive to parameter choices within a broad range of reasonable values.  This 
robustness stems directly from the highly adaptive nature of the intensity-based methods, which 
enables adjustment of strategy on the fly to reflect current and expected resource consumption 
levels.  
In the case of bottom-up reaction to unexpected events such as the loss of resource capacity, a 
second planner/scheduler integration strategy based on identification and modification of those 
tasks that have proved difficult to schedule was also investigated and found to work well. This 
scheduler-driven strategy can be seen as producing a competing bias to that of an intens ity-
driven approach, and we suspect that in many planning/scheduling circumstances, the optimal 
response may in fact lie somewhere in the middle. One idea for future investigation is the 
development of a broader integration protocol, where these competing biases form a basis for 
negotiation between planner and scheduler. 
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The examination of incremental replanning and rescheduling problems, both to accommodate 
new or changed objectives and to respond to unexpected execution events, also gave rise to 
analysis of the behavior of constituent planning and scheduling processes, validating the 
desirable incremental properties (e.g., efficiency, solution stability) of our respective solution 
techniques. In one case, analysis of an initially developed technique for priority-based scheduling 
found it to be unnecessarily myopic, and this discovery subsequently led to the design and 
implementation of a much less disruptive and hence much superior solution change procedure.  

One aspect of joint planner/scheduler design not considered in this work was integration with the 
human decision-maker.  The SRI planning and CMU scheduling technologies both support 
flexible, human-in-the- loop generation and repair, through incorporation of various forms of user 
guidance. Although support for human guidance was not a technical focus for the project, we 
envision human direction as an integral part of the planning and scheduling process in many (if 
not most) complex domains. Understanding the mechanics of injecting human decision-makers 
into automated planning and scheduling processes is clearly another broad direction for future 
research. 

With regard to the experimentation performed in this work, there are also further steps that need 
to be taken. The experiments documented here have been conducted relative to a specific 
planning knowledge base and hence make specific assumptions about the structure of the 
problems to be solved. It would be useful to broaden the experimentation to include other 
planning domains, and consider more comprehensively the impact of task inter-dependencies and 
other similar aspects of problem structure. More generally, the reactive experimentation 
performed in this project has restricted its attention to solution of so-called “point” experiments; 
given a starting plan/schedule and some external event, how should planning and scheduling 
processes be engaged to appropriately realign the solution. The obvious next step is to evaluate 
the integrated planning and scheduling strategies that we have developed in an extended, 
embedded application context.  The appendix provides a proposal for this type of evaluation.  
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10. Appendix - Experiment D: Embedded Operations  

This section describes a proposed experiment for evaluating the effectiveness of JPS as an 
embedded controller for the air operations domain.  As noted in the introduction to this 
document, it was decided that the CMU/SRI team should focus on developing and evaluating 
extended planner/scheduler integration techniques in lieu of performing this experiment.  We 
include the outline of the experiment here for completeness.  The description of the experiment 
conforms to the documentation format provided by the JFACC program. 

10.1. Statement of Experimental Objectives 

10.1.1. Hypotheses 

Hypothesis: Tightly coupled planning and scheduling can provide responsiveness and agility for 
real-time command and control for air operations. 

Level: JFACC Mission Contribution Experiment 

Description:  

This experiment will involve situating the integrated Planner/Scheduler within an appropriate 
simulation environment (either the Enterprise Model or SRI’s SimFlex simulation framework) in 
order to evaluate its ability to support realtime command and control for Air Operations. The 
system will accept information relating to feedback from execution assessment, evaluate impact 
on current plan/schedule, interleave schedule and plan revision actions as necessary to resolve 
detected problems and exploit opportunities. The objective is to determine whether the 
technology can meet the challenges of a realistic operational setting. 

10.1.2. Value 

Evaluations within an appropriate simulation environment will provide a strong assessment of 
whether the integrated Planner/Scheduler will be able to cope with the demands of realistic air 
operations. 

10.2. Description of Experimental Setup 

10.2.1. Simulation Features 

10.2.1.1. Plant 

Plan Entities and Dynamics 

• Weapons effectiveness models (Scheduler)  

• Logistics models (Scheduler)  

• Target networks (Planner) 

• Centers of gravity (Planner) 

• Campaign objectives (Planner) 

• Weather (Planner, Scheduler) 
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Exogenous Data Streams and/or Events 

• Pop-up targets 

• Intelligence regarding new/changed threats 

• Weather 

• Redirection of top- level campaign objectives 

• Nondeterministic changes in logistics 

• Execution results (actual mission execution times, probability of target success) 

• Situation assessment (whether low-level objectives are satisfied) 

10.2.1.2. Plan or System Identification 

Internally, the planner and scheduler maintain the following information about dynamic 
(projected) state: 

• Resource availability and location profiles over time 

• Expected takeoff, TOT, refueling, landing times for each mission (i.e., an attack schedule for 
the current horizon) 

• Centers of gravity 

• Threats (in terms of source, type, level, expected direction of attack) 

10.2.1.3. Control Signals 

The control signals will be defined as a set of missions to execute, encoded as activities with the 
following specified information: 

• Designated focus: a target/DMPI, a patrol location, or some other form of air mission 
objective.  

• Assigned wing/base: the base/wing to which the mission has been assigned 

• Weaponeering solution: the platform and munitions types to be used, and the numbers of 
each that are required. 

• Execution time frames. Minimally, this will include a TOT window, but this could also 
specify which launch window to use and other timing information 

• Supporting resources and synchronization constraints: In the event that supporting resources 
are required to carry out the mission (e.g., tanker aircraft to provide refueling), appropriate 
support missions will also be assigned and synchronization constraints (time, location) will 
be specified. 

The set of missions will be updated dynamically by the planner/scheduler in response to both 
execution results and changes in tasking, resource availability, and simulated world conditions. 

10.2.1.4. State Observation Signals 

The following state observations are required: 
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• Execution results 

o Actual times when the mission launched, when target was hit, etc. 

o Effects – e.g., what probability of destruction was achieved  

• Changes in resource availability 

• Changes in state information (Projected – not currently used) 

o Weather 

o Enemy defenses (locations, types) 

• Intelligence 

o Changes in identified threats 

• Situation Assessment 

o Determination of success in attaining stated objectives 

  

10.2.2. Variables or Correlated Parameters  

Independent Variables: 

• Rates of success/failure for missions 

• Rates of changes in world state 

• Rates of changes in guidance 

• Rates of changes in resource availability 

 

10.2.3. Specification of Test Runs  

The most appropriate baseline to use for comparison would be comparable runs in which 
operational personnel develop and adapt the plans and schedules. The cost and difficulty 
involved in conducting such tests, however, makes them impractical. Furthermore, since there is 
no current technology that provides comparable capabilities, technological baselines are not 
possible.  

Given the lack of a suitable baseline, our evaluation will focus on measuring the limits of the 
technology. Limits will be defined in terms of the scope (qualitative) and frequency 
(quantitative) of changes to which the system can successfully adapt. Success will be measured 
relative to the achievement of stated objectives as a result of the simulated execution of 
scheduled plans. 

10.3. Pre-Lab Analysis  

Similar to the pre-analysis performed prior to Experiment B, we will expand on the results 
already obtained for different plan and schedule revision strategies and perform preliminary 
configuration, evaluation and tuning of strategies to determine a composite control strategy for 
coordinating the planner/scheduler response to (simulated) execution results. 




